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Abstract 
The progressive growth in nanotechnology approaches to diagnostics 
and therapeutics, especially for cancer, necessitates training physicians 
in nanoethics. This article explains why it is critical for medical education 
to include instruction in nanotechnology, nanomedicine, nanotoxicology, 
and nanoethics and suggests basic concepts educators can use to infuse 
curricula with this content.  

 
Introduction 
As it continues to evolve to meet the needs of the next generation of clinicians, 
medical education should incorporate new interventions and diagnostics, among 
them nanotechnology applications. Nanotechnology is a science built on 
fundamental changes in material properties because of unique chemical, physical, 
mechanical, and optical properties that occur when particle size falls into the 
nanorange. The nanoscale ranges from 1 to 100 nm, as that is the size at which 
many of the special properties particular to the nanoscale arise, although most 
unique properties arise below 30 nm.1 However, the entire 1 to 999 nm range is 
sometimes included under the heading of nanotechnology. Optical properties of 
some materials (eg, the fluorescence signature of quantum dots and the color of 
nanogold) are determined simply by the size of the nanoparticles, not by the choice 
of material.2 At this scale, surface chemistry and charge dramatically increase 
bioimaging and biosensing capabilities.3,4 In addition, nanoparticle size, shape, and 
surface charge can dictate how nanoparticles are processed and signals are 
amplified in the body.5-9  
 
Although nanotechnology has brought together the fields of materials science, 
engineering, and medicine in the development of diagnostic and treatment options 
in medicine and surgery,10 nanomedicine and nanotechnology have not been 
included in recent influential publications on medical education reform such as the 
Association of American Medical College and the Howard Hughes Medical 
Institute’s “Scientific Foundations For Future Physicians.”11 However, it is 
imperative that the next generation of physicians understand these developments 
so that they can be better prepared to provide consultation to scientists about 
potential applications, integrate nanotechnology-based therapeutic choices into 
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practice, and respond to ethical challenges.12 This article explains why it is critical for 
medical education to include instruction in nanotechnology, nanomedicine, 
nanotoxicology, and nanoethics and suggests basic concepts educators can use to 
infuse curricula with this content. 
 
The Importance of Nanotechnology to Medicine 
While its use is still early, nanotechnology promises to revolutionize medical care. 
The number of nanotechnology-based drugs, devices, and diagnostics clinically 
available and in clinical trials is growing rapidly. Many of the early applications of 
nanotechnology have been in the field of drug delivery and have allowed for new 
agents with improved pharmacologic or pharmacodynamics profiles. Underlying 
these advances is the enhanced permeability and retention effect (EPR) in solid 
tumors, which allows for the passive or active accumulation of nanoformulated 
drugs at the site of solid tumors at higher levels than in the rest of the body.13 Major 
clinical examples of such drugs include US Food and Drug Administration (FDA)-
approved cancer nanochemotherapeutics such as nanoparticle albumin-bound 
paclitaxel,14 liposomal doxorubicin,15 liposomal daunorubicin,16 liposomal 
daunorubicin-cytarabine,16 and liposomal vincristine.17 Emerging applications of 
nanotechnology for treating cancer include more targeted approaches, stimuli-
responsive delivery agents, combinatorial approaches, gene therapeutics, and 
immunotherapies.18-21 Additionally, there are hundreds of new technologies in 
preclinical development.22  
 
Early incorporation of nanotechnology into medicine has primarily involved drug 
delivery, which has been criticized for simply extending patent protection on 
blockbuster medications that are close to losing patent protection rather than truly 
offering paradigm-shifting improvements in patient care.23 Most first-to-market 
nanotechnologies, however, show improved pharmacologic or pharmacodynamic 
profiles,24-26 making for more convenient medication dosing and potentially better 
safety profiles. The increased ease of use and reduced dosing frequency of 
nanodrugs can enhance patient experience and adherence and potentially reduce 
drug-related toxicity. However, studies have not yet shown improved survival with 
nanodrugs compared to unmodified, carrier-free parent drugs.22  
 
Beyond chemotherapeutics, nanoparticle formulations have shown potential for 
delivery of a wide spectrum of therapeutic agents that otherwise do not have 
“druggable” characteristics. Examples include nucleic acids and targeted inhibitors 
that are either in early phase clinical trials or just starting to reach the clinic to treat 
cancer, amyloidosis, and—as vaccines—to prevent infectious disease.27-30 
Patisiran, an siRNA encapsulated in a lipid nanoparticle formulation, was recently 
FDA-approved for treatment of transthyretin-mediated familial amyloidosis 
polyneuropathy (FAP).31 Phase I clinical trials are underway for using lipid 
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nanoparticles for delivery of mRNA as a vaccine for cytomegalovirus,32 as a vaccine 
for cancer,33 and as an intratumoral injectable for cancer.34,35 Additionally, otherwise 
toxic drugs have been formulated as nanoparticles to mitigate the associated side 
effect profile while maintaining or improving efficacy. For example, there are 
multiple clinical trials with an encochelated form of amphotericin B for treatment of 
mucocutaneous candidiasis36 and resistant vulvovaginal candidiasis37 and planned 
trials for antifungal prophylaxis in chemotherapy patients38 and for treatment of 
cryptococcal infection.39  
 
Nanotechnology has other medical applications. It has been used to develop devices 
such as nanoporous drug-eluting stents,40 nanofluidics for advanced lab-on-a-chip 
design,41 and clinical assay systems, including a nanogold-based system for rapid 
detection and identification of infectious pathogens.42-46 Major strides have been 
made in the development of next-generation nanovaccines with benefits ranging 
from longer sustained release of antigens or adjuvants to better tissue penetration 
and improved cross-presentation for activation of multiple T-cell subsets.47 For 
example, development of a single-shot polio vaccine using nanotechnology may 
allow for improved vaccination strategies in Third World settings.48 Combined 
imaging and therapeutic agents (termed theranostics) have been developed to co-
deliver imaging and therapeutic agents, such as photothermal therapy.49,50 In 
dermatology, nanotechnology has been used in diverse topical applications, 
among them improved sunscreens (nanoparticulate zinc and titanium dioxide), 
antiseptics (nanosilver, chlorhexidine), and follicular targeting (eg, nanoparticle 
delivery of retinoids for acne), and nanoconjugates have been shown in preclinical 
studies to be novel topical therapeutics for diabetic wound healing,51 scar 
identification,52 and psoriasis.53,54 
 
Ethical Considerations in Nanomedicine 
With the development of this new technology also come new ethical 
considerations. The majority of ethical concerns raised about nanomedicine are not 
novel or specific to nanotechnology in particular.55 However, due to the greater 
uncertainty of nanotoxicity compared to the toxicity of more traditional 
medications, nanotechnology clinical trials theoretically have a higher risk for 
participants. This increased risk has implications for informed consent in clinical 
trials.56-60 For example, the occurrence of side effects may be delayed, given that 
some nanotechnology platforms, such as nanogold, can accumulate in tissues and 
persist longer than traditional medicines.61 As a result, some side effects might not 
be captured during the trial itself or even during the first few years of postapproval 
long-term safety monitoring. Although clinical trials are often powered to detect 
strong early negative safety signals, years of experience with medications is 
required before clinicians can fully understand the long-term effects of exposure.  
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Some have argued that the additional theoretical risks of nanotechnology have 
been underrecognized and that insufficient regulatory attention has been paid to 
these nanotoxicity risks.62 These additional risks may be at least partly ameliorated 
through the use of biodegradable nanotechnology platforms, which by design do 
not persist long term and accumulate in tissues.63 Generally, the FDA has articulated 
a belief that standard regulatory protocols, sound science, thorough product 
characterization, and its own flexible and responsive regulatory oversight is 
sufficient for nanomedicine applications.64,65 
 
As with much of new technology, nanomedicine is often quite expensive, and when 
covered by insurance plans, the cost is passed on to all covered patients via higher 
insurance premiums. That cost leads to concerns that nanotechnology and its 
applications will serve to further compromise global equality in access to health 
care,66 and it raises questions about the ethics of new formulations and patent 
exclusivity extensions.   
 
Changing Medical Education to Keep Pace With Nanotechnology 
Given the growing prevalence of nanotechnologies in medicine and their 
concomitant ethical risks, it is important for students to have an introduction to 
nanotechnology during their medical education. Multiple approaches could be 
envisioned to optimally integrate nanotechnology content into the medical school 
curriculum. Nanotechnology could be a stand-alone course that covers the 
fundamental scientific principles of physiochemical behavior at the nanoscale and 
the application of nanotechnology to imaging, drug design, and specific clinical 
disciplines, in addition to nanotoxicology and the risks of nanomedicine.67 
 
A problem-based approach in a stand-alone course is well suited to an in-depth 
discussion of nanotechnology and its implications. For example, the pros and cons 
of using liposomal formulations of doxorubicin (vs free drug alone) could introduce a 
discussion of the benefits of nanomedicine as well as the ethics of drug pricing, 
patent protection windows, and the incentive structures that exist for 
pharmaceutical development. Additionally, problem-based coursework offers a way 
to discuss nanopharmacology and to consider other potential agents, formulation 
requirements, and future targeting capabilities. This approach might allow for a 
holistic view of nanotechnology and its applications.  
 
Instruction in nanotechnology could be infused into courses in clinical 
pharmacology, pathology, immunology, and oncology. Clinical pharmacology 
coursework could include the size and scale of nanotechnology, unique properties of 
nanomaterials, targeted delivery systems, mechanisms of nanodrug delivery, and 
the interaction of nanomaterials with the host. Pathology coursework could include 
nanodiagnostics, nanotoxicology, and nanoethics. Immunology and infectious 
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disease coursework could include the immune response to vaccination and 
nanoparticle-based cancer vaccines.47 Immunology coursework could also be 
modified to reflect the cross talk between nanotechnology, materials science, and 
innate immunity. For example, instruction on immunologic foreign body responses 
could highlight the way that nanotechnology applications and implantable devices 
have been designed to prevent the normal biological response of protein binding, 
opsonization, and phagocytosis, thereby reducing clearance of therapeutics. Ethics 
courses might review nanotoxicology, potential side effects in patients of 
nanotherapy, possible risks to the environment, and cost-benefit analyses. Ideally, 
coursework on nanotechnology would involve collaborative discussion between 
medical specialists, bioethicists, and researchers involved in developing these 
technologies or translating them into the clinic.  
 
Conclusions 
Rapid developments in nanotechnology have begun to enter the clinic and are poised to 
make a major impact. Nanotechnology is a multidisciplinary field, making it amenable to 
multiple points of entry into medical curricula, including coursework on pharmacology, 
pathology, immunology, and oncology. Medical education will need to meet the challenge 
of integrating nanomedicine, nanotoxicology, and nanoethics into the current curriculum 
to ensure that future physicians are prepared for a nanotechnology future. 
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