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Abstract 
Datasets are often considered “ideal” when they are large and contain 
longitudinal and representative data. But even research that uses ideal 
datasets might not generate high-quality evidence. This article 
emphasizes the roles that transparency plays in enhancing observational 
epidemiological findings’ credibility and relevance and argues that 
epidemiological research can produce high-quality evidence even when 
datasets are not ideal. This article also summarizes strategies for 
bolstering transparency in key phases of research planning and 
application. 

 
Dataset Size and Scope 
In epidemiology research, the quality and believability of findings often hinge on the size 
and scope of datasets. Datasets are considered to be “ideal” if they are large and the 
data they contain are longitudinal and largely representative of the underlying 
population. However, the assumption that large datasets inherently produce high-quality 
epidemiological research is misleading and should be challenged, as there is more to a 
high-quality observational study than just the size of the data input. This article 
summarizes the roles of transparency and systematic reporting of methodologies, data 
sources, and analytic code in enhancing the credibility of observational studies. This 
article also posits that high-quality research is possible with datasets that are not ideal, 
provided that there is a high level of transparency throughout the research process. By 
examining the different stages of a research study—from conception to execution—this 
article outlines practical strategies that can be used to increase transparency. 
 
Well-Formulated Research Questions 
A critical aspect of epidemiological research is formulating a research question. A well-
crafted question guides the entire research process. It helps in defining the scope and 
design of the study, in identifying an appropriate data source to answer the question, 
and in selecting appropriate statistical methods to answer the question. 
 
There are excellent resources for guidance on developing health research 
questions.1,2,3,4 Briefly, the question should be relevant, answerable (through the 
collection and analysis of data), and specific. It should address a gap in knowledge or a 
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pressing public health issue. The question should also have practical implications for 
health care, policy, or further research. 
 
A commonly used framework to specify a clinical research question is referred to as 
PICOT, which contains 5 elements: population to be studied, intervention or exposure 
used in the study, comparator or reference group for treatment group comparisons, 
outcome or result to be measured, and timeframe or duration of data collection. As an 
example of use of this framework, one study of mRNA COVID-19 boosters aimed “to 
compare the effectiveness [outcome] of a third dose of either the BNT162b2 [exposure] 
or the mRNA-1273 [comparator] vaccine among US veterans who had completed an 
mRNA vaccine primary series [population] and received a third dose between 20 
October 2021 and 8 February 2022” or between “1 January and 1 March 2022 
[timeframe].”5 

 
Data Provenance 
Key to transparency is understanding the context in which and the intent for which data 
were collected. Although there are many different types of bias,6,7,8,9,10 it can be helpful 
to think about them in terms of selection bias and information bias. Selection bias is 
bias that arises when the study sample systematically differs from the population (for 
example, self-selection into a study). Information bias is bias that arises when key 
variables are not measured accurately (for example, self-reported disease status). Each 
of these biases encompasses a number of more specific biases that should be 
considered further, depending on study design and data source.11 
 
Another way to consider potential biases is to break down the stages of data collection 
into steps. There are 4 key steps at which bias can occur that involve choices about: (1) 
location, (2) participant, (3) research team, and (4) software used, each of which are 
described below. Knowledge of the location in which the participant’s data were 
collected is critical for identifying any potential differential bias introduced by the setting 
(eg, the need to pay or have health insurance). For example, was a patient being seen in 
routine health care, in an emergency setting, or at a private health clinic? Next, 
researchers should consider the participants and whether their health behavior 
introduces any biases. For example, participants who are captured in a dataset, either 
through routine care or in a specific research study, can often request that their 
information be removed at a later stage (ie, “opt-out”), potentially introducing bias after 
initial data collection. The research team is also an important but underestimated 
source of potential bias. Recognizing this source of bias requires consideration of team 
members’ background, training, and unconscious biases, which may affect the types of 
data that are recorded. Finally, the software used to create the dataset may also 
introduce biases by prompting researchers or clinicians to enter data in a specific way or 
to ask particular questions. 
 
It is not always possible to completely remove biases arising from data provenance, but 
it is important to acknowledge and account for them when possible in the interests of 
transparency and accuracy, as these biases might affect both the results and the 
generalizability of findings to a different population. The questions researchers ask may 
differ between countries—particularly between those with and without nationalized 
health care systems—so it is important to understand the context in which and the 
purpose for which data were collected. 
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Preregistration 
A key approach to improving transparency and trust in research is the preregistration of 
study protocols.12,13,14,15 By preregistering study protocols, researchers establish a clear 
blueprint of their research objectives, methods, and analytical plans before data 
analysis begins. This proactive approach mitigates risk of publication bias,16 which 
refers to the suppression of whole studies—for example, those without statistically 
significant results.17 Preregistration also reduces the potential for researchers to 
disseminate misleading or erroneous results by holding them accountable to their 
stated methodologies and hypotheses. Transparent documentation of study protocols 
enables stakeholders, including peer reviewers and readers, to evaluate the integrity 
and robustness of the study, thereby bolstering confidence in the validity of its findings. 
 
One area of epidemiology in which preregistration is increasingly common is real-world 
evidence (ie, data derived from sources such as electronic health records, registries, 
medical claims, and patient self-monitoring) of drug safety and effectiveness.18 As the 
US Food and Drug Administration expands the use of real-world evidence in its drug 
approval decision-making processes,19 the use of preregistered protocols is critical to 
improving transparency. Although sponsors and researchers are required to preregister 
certain clinical trials and report results to ClinicalTrials.gov,20 a similar system for real-
world studies did not exist until recently. The Open Science Framework developed by the 
Center for Open Science aims to fill that gap by offering a free, open-source platform to 
preregister protocols in addition to other study materials.21 

 
A common misconception of preregistering study plans is that they are fixed. On the 
contrary, protocols are flexible and can be edited as the study progresses. However, 
transparency is achieved by having all deviations from the original protocol documented 
across the lifetime of a study. Beyond improving transparency, preregistration cultivates 
a culture of collaboration and open science,22,23 encouraging reproducibility within the 
research community. 
 
Code Sharing 
Once data have been made available to researchers, it is usually necessary to “clean” 
the dataset to get it into a format conducive to analysis. This usually means, at a 
minimum, applying the prespecified criteria to obtain a narrower dataset. Prespecified 
criteria might be a particular population (eg, males 65 years or older) or patients with a 
particular duration of follow-up (eg, at least 1 year of follow-up after baseline. Data 
cleaning also includes the creation of variables of interest, including exposures and 
outcomes. Covariates and other variables of interest may be important for adjustment of 
models, stratification, or identifying subpopulations. Dataset preparation is typically 
carried out using scripted code, such as Python, SAS, Stata, or R. 
 
Since defining these variables and running analyses are fundamental to understanding 
how the research protocol was applied to the raw data, researchers should strongly 
consider publicly sharing code. GitHub is a free service widely used for code sharing.24 A 
key advantage of GitHub is that every update to code is time stamped, allowing proper 
version control. Licences can be applied to the code to allow (if permitted) reuse and 
adaptation. Whenever possible, efforts should be made to add good documentation to 
any code—including, but not limited to, in-line code comments, a README file, and 
software versions. 
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One prominent example of good preregistration practices and code sharing is 
OpenSAFELY.25 OpenSAFELY is a highly secure, transparent, trusted research 
environment for analysis of electronic health records data arising from primary and 
secondary care. All platform activity is publicly logged so that anyone at any time can 
review what code is being run against the data through the OpenSAFELY jobs-server.26 
Before any code is submitted, researchers must preregister a study protocol, which is 
posted publicly. All software for data management and analysis is shared on GitHub, 
automatically and openly, for scientific review and efficient reuse.27 
 
Interpretation 
Studies are carried out to generate answers to important research questions. It is 
therefore crucial to appropriately interpret results of a given analysis in a way that 
generates meaningful, clear, and believable evidence. Accordingly, researchers should 
clearly explain how conclusions were drawn from the data and how analyses were 
carried out. The findings should also be presented within the wider context of previously 
published literature. Do the results fit in with what is already known about the topic? If 
not, more questions should be asked to interrogate what potential biases might be at 
play. 
 
When interpreting results, special consideration should be given to issues that are 
known to cause confusion, such as the differences between absolute and relative 
risk28,29,30 and whether the results can be generalized to a wider population.31,32 A lay 
summary can clarify potentially confusing issues while helping to explain some of the 
findings without the statistical jargon. Additionally, a clear, comprehensive figure that 
conveys a study’s key findings is often what many readers look to first,33 so authors 
should be mindful of this preference when developing and selecting the results to put in 
figures. Finally, infographics and expert opinion pieces can aid understanding if placed 
alongside a particularly controversial or difficult-to-understand analysis. 
 
Need for Institutional Resources 
Transparency and open science can support reproducibility and the responsible conduct 
of research, but they are not a guarantee of scientific rigor or equitable science.34 An 
epidemiological study can be transparently reported but still come to the wrong 
conclusions, as was the case for a seminal study on the protective effect of high-density 
lipoprotein cholesterol on the risk of coronary heart disease.35 Moreover, data sharing 
and other open science practices can pose a resource burden on scientists without 
institutional support; these barriers can be particularly marked for scientists in lower-
resource settings.36,37,38 Even when resources are available, concerns have been raised 
that the movement towards open data risks “perpetuating a neocolonial dynamic,” 
wherein it is necessary for researchers to pay for access or purchase costly software or 
training in order to use data effectively.39 Finally, data sharing, in particular, requires 
careful consideration to ensure patient privacy and respect the original consent 
processes.40,41 
 
Conclusion 
High-quality epidemiological research is not always achieved even with an ideal dataset. 
Transparency is often underutilized as a way to increase the believability—and therefore 
the meaningfulness—of epidemiological findings from observational research. 
Transparency can be achieved through specifying a well-formulated research question, 
acknowledging limitations arising from data provenance, preregistering analysis plans, 
code sharing, and making measured interpretations. Preregistration and code sharing 

https://journalofethics.ama-assn.org/article/which-values-should-guide-evidence-based-practice/2025-01
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are pivotal practices for fostering not only transparency and credibility but also 
accountability for and reproducibility of research designs and analyses. These practices 
also combat biases and promote a culture of collaboration and open science. Ultimately, 
increasing the adoption of these modern practices in epidemiology could serve as a 
cornerstone for building trust among researchers, patients, and the broader public. 
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